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Abstract  

Utilising as starting point the double solution theory of Louis de Broglie and the Bohrn- 
Vigier hypothesis of subquantum fluctuations, an attempt is made to give an example 
of the nonlinear field theory in which the 'guidance' theorem of de Broglie can be realised. 
The simplest scalar model is considered. 

1. Introduction 

In the de Broglie double solution theory (de Broglie, 1956) an elementary 
particle is described by a regular solution (u-wave) of the underlying 
nonlinear field equations. The field u(r, t) is supposed to be square sum- 
mable. Hence, u vanishes at infinity 

lim u(r, t) = 0 
r-~co 

For this reason the field equations may be linearised in the region of space 
outside the particle, where u(r, t) is sufficiently small. In this region there 
exists a new class of solutions (v-waves). It is assumed that only v-waves 
must be responsible for the wave properties of elementary particles and 
coincide with the corresponding solutions of the wave mechanical equations, 
the normalisation factor being omitted. 

For the explanation of the fact that v-waves may play the role of proba- 
bility amplitudes Bohm & Vigier (1954) introduced the subquantum 
medium ('thermostat each6') which had to be the source of subquantum 
fluctuations. In the proof of their theorem they used the hydrodynamical 
analogy and, in particular, the continuity equation O~ju = 0 with positive 
densityj ~ > 0. 

The hypothesis of the subquantum medium plays a fundamental role in 
the de Broglie thermodynamics of the isolated particle (de Broglie, 1964, 
1968). 

The following is an attempt to find new applications of the Bohm-Vigier 
hypothesis to the nonlinear field theory. Namely, it is supposed that the 
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existence of subquantum fluctuations must change the differential charac- 
teristics of the underlying field equations. 

In fact, let the field u satisfy a nonlinear differential equation. Since the 
characteristics of any differential equat ion give the propagation law of 
small perturbation front, it is sufficient to consider the linearised field 
equation. 

Following de Broglie (1967), one can represent the front velocity V as 
a sum of its regular and random parts: 

V = Vreg "~ grand (1.1) 

Since by definition Vreg is an average front velocity, we have 

(V)  = Vre~ 

and therefore 
( V  2) = v~o~ + 2 (Vrand > (1.2) 

Now it is natural to assume that 
( V  2) = c 2 

where c is the velocity of light. If  now we introduce the 'regular' and 'random' 
coordinates by putting 

we shall obtain the following characteristics for our field equations: 

c z dt 2 = dr 2 + d~ z (1.3) 

Thus, the field function u must depend not only on the ordinary space- 
time coordinates x g, ~ = 0, 1, 2, 3, but also on the complementary 'random' 
ones ~=~, j = 1, 2, 3, which are just to characterise the subquantum fluctu- 
ations. The possible corollaries of this hypothesis will be considered in the 
simplest case of a neutral scalar field. 

2. Scalar Field Model. Uniqueness o f  the Vacuum 

Let ~(x,~) be a neutral scalar field function. In order to distinguish 
differentiation by x~ and ~J, it will be convenient to write: 

0 
O~ j ~ ~j ~ X~ j;  ~j2 -- A (2.1) 

Next, it is obvious that all the physical quantities must be obtained as 
averages over ~-space. This means that, for example, the hamiltonian may 
contain the integrals of the kind 

f d 3 6,(~) ~2 
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Since we consider only regular field functions 9(x,~:), we may choose 
p(~) = ~:2 and introduce in the Hamiltonian the integral 

~-- = f d 3 ~(~2 ~io2) (2.2) 

Thus, we may consider the following field action: 

S = -�89 f d 4 xo~(~ -') - �89 f d 4 x d  3 ~[0, q90"q9 + (S179) 2 - '~o 921 (2.3) 

where o~(9 -) is an unknown nonlinear function. 
Then the variational principle gives the following field equation: 

(IN + A~ +A0 - ~2 ~-'(3-))~ 0 = 0  (2.4) 

First of all we must find the solution of (2.4) which corresponds to a 
no-particle state, i.e. vacuum. In this case the field function need not depend 
on x~', that is 9 = 90(~). 

It turns out that one can choose the constant ~0 so that the vacuum 
solution will be unique and spherically symmetrical. In fact, the equation 
for % is 

2 , 
90" + ~ 9 o  + Ao~~ - ~2 9o ~-'(3Z'o) = 0 (2.5) 

where 

J-o - ~--[~o] 

It will be shown later that the number J-o can be determined uniquely, 
provided that the suitable function ~(~--) is chosen. 

The equation (2.5) has the evident simplest solution of the form: 

90 = Cexp {-~'o ~:2} (2.6) 

if 

~- '(~'o) = ~)to 2 (2.7) 

The relation (2.7) gives a single value of A0 > 0, which provides the unique- 
ness of the vacuum solution. By direct computation of (2.2) one can also 
find the value of the constant C in (2.6): 

C 2 - 2~--o ,~/2/27~/-3 7r 3/2 

Now we must determine J-0. Note for this that the vacuum state must 
be relativistically invariant and therefore its energy must vanish, i.e. 

Eo = 0 (2.8) 

It turns out that this condition is sufficient to determine ~--o. In fact, multi- 
plying (2.5) by 9o and integrating over se-space, one finds the following 
identity: 

J ' o  J ' ( J - o )  + f d3 ~[(~qTCpo) z - ~o qgo 2] = 0 (2.9) 
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with the aid of which the vacuum energy expression can be transformed 
as follows: 

�89 j" ,~  ~ ( 9 - o )  + �89 f d~ xd~ ~[(V~o) ~ - ~o Eo 9% 2 ] 

�89 f d3 x[~(~-"o) - ~"0 ~'t(~'-0)] 

It is seen that (2.8) holds if 3--0 satisfies the equation 

o~(J-o) = ~-'0 o~'(J-o) (2.10) 

It should be noticed that the proposed scheme will be consistent if and 
only if the solution of (2.10) is unique and compatible with (2.7). Then the 
problem of vacuum state will be solved. 

3. u- and v-waves. Mass Spectrum 

Consider an arbitrary regular solution of (2.4), which corresponds to a 
u-wave and satisfies the boundary conditions: 

lim ~(x, ~:) = %(~); lim q0(x, ~:) = 0 (3.1) 

Prove that if such a solution exists, then its field energy is strictly positive. 
The field energy may be written as follows: 

= �89 f a~ ~(~-- )  + �89 f a~ xa~ ~ [ ( v ~ ) '  + ( v ~ )  ~ + (ao ~o)~ - ~o~o21 (3.2) E 

Since E is the integral of motion, one can put 

where by definition 

E = <E)~ 

( f ) t  = ,-~o~lim ,rl f f( t)  dt (3.3) 
o 

Multiplying (2.4) consecutively by % (r. V) (p and (~- RT) ~o and then carrying 
out the r, l~-integrations, complemented by the operation (3.3), one can 
obtain the following three identities: 

f a 3 x < 9 - ~ ' ( ~ - 3  + f a 3 ~[(v  ~)2 + (v~)2  _ (ao~o)2 _ ~0 ~1>,  = 0 

f a~ x< ,~(J3  + f a~ ~[�89 v) ~- + (,e~o)~ - (ao v) ~ - ao ~o~]), = 0 

f a '  x ( ~ 3 o ~ ' ( J 3  + f a, ~[(v ~o)2 + ~(~7~)~ - (ao ~)~ - ;~o ~ ] ) , :  0 

the boundary conditions (3.1) and the equations (2.9) and (2.10) being 
taken into account. 
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These identities may be rewritten in the more simple form: 

f d 3 x ( ~ ( ~ )  - f d 3 ~:[3z(V ~)2 + (V9)21), = 0 (3.4a) 

f d 3 x ( J , ~ ' ( ~ - )  - f d 38(W9)2), = 0 (3.4b) 

f d 9)2 + 2(~179)2 _ (0 ~ ~)2 _ ~2)t = (3.4C) x d  3 ~<(v Ao 0 

Using (3.4a, b, c), the following expression for the field energy can be 
easily obtained: 

E = f d 3 x d  3 ~((0 o 9) 2 + �89 . (3.5) 

which proves our statement. 
Now we may treat the asymptotic behaviour of the field function (v- 

waves). With this intention put 

9 = 9 o + ~ b  

where by virtue of the boundary conditions (3.1) ~b < 90. Then ~b satisfies 
the following linear equation: 

(D + Ax + ao - ~:2 ~-,(3--o) ) ~b = 2r 2 9o o~"(9-o) f d3 r ~bf 2) (3.6) 

Since the coefficients in (3.6) depend only on r one may separate the 
variables by putting 

$(x, ~) = v(x) w(O (3.7) 

The substitution of  (3.7) into (3.6) gives: 

([~ - m2)v = 0 (3.8) 

(A + ,~o + m2 - ~z oo~,(ff--o) ) w = 2~ 2 90 ~ f d3 ~(9o w~ 2) (3.9) 

where m 2 is the separation constant. 
It is seen that v(x) satisfies the well-known Klein-Gordon equation for a 

scalar particle of mass m (h = c = 1). The correspondent mass spectrum is 
determined by the equation (3.9). It may be shown that the mass spectrum 
will be real (m 2/> 0) if 

o~"(Jo) t> 0 (3.1o) 

In fact, from the equation (3.9) we obtain 

m 2 f d' r 2= 2~"(~--o)[f  d 3 ~:(9o w~r z 

+ f d3 ~[(X~Tw)2-,~oW2 + ~2~"(J-o)W2 ] (3.11) 

At the same time, as it is seen from (2.5) and (2.6),)~0 is the lowest eigen- 
value of the operator 

L - - ~  + ~2 o~,(~0) 
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Therefore 

f d3 ~[(X~Tw) 2 ')tO W2 -~ ~2 ~ '(~--0)  W2] 

= f d 3 ~[w(L - )to) w] >1 0 

Hence, as follows from (3.11) and (3.12), m 2/> 0 if ~ " ( J - 0 )  >~ 0. 

(3.12) 

4. The 'Guidance' Theorem. Discussions 

Now we can pass to the well-known 'guidance' theorem of Louis de 
Broglie. This theorem states that the system of u- and v-waves must be 
self-consistent, that is the behaviour of u-wave must be determined by the 
form of v-wave and conversely (de Broglie, 1956). 

The connection of u, v-waves will appear if we make the following natural 
assumption. Namely, suppose that v-waves are generated by u-waves. It 
means that we must impose the following initial condition 

lim v(x) = 0 
t~--co 

Then the part of general solution of (3.6), which contains v-waves, can be 
written with the aid of the retarded Green function as follows: 

~(x) = ~s ws(~) d4 k exp (ikx) gs(k) • k2 2-m~ 2 i~re(k ~ 8(k 2 - m~ 2) 

(4.1) 

The first term in (4.1), which contains the principal value ~ / ( k  2 -ms2), 
corresponds to the part of  u-wave (in the region r --> ~o) and the second 
one gives the form of v-wave: 

(4.2a) us(x)(~_~| = ~f d4 kexp(ikx)g~(k)  kz _ ms 2 

v~(x) = -iTr f d 4 k exp (ikx) gs(k) E(k ~ 3(k z - m, z) (4.2b) 

Their connection is realised by means of the common function gs(k). 
It should be noticed that by definition of vreg = dr/dt as average front 

velocity, us(x) and v,(x) may describe the particle behaviour only in average. 
Therefore the complete theory must be inevitably statistical. 

To underline this circumstance, show how one can obtain in our scheme 
the Planck-de Broglie relation 

P~ = k~ (4.3) 

which is the particular case of the 'guidance' formula (de Broglie, 1956). 
Consider a regular solution of (2.4), corresponding to a particle of mass 

ms. It means that in a proper reference frame the field energy coincides 
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with m,, i.e. E=ms ,  and the asymptotic behaviour is described by 
~s = us(x)ws(~). Consider the flux of  these particles, filling all the space. 
For  simplicity we can choose the rest frame of the flux and dispose the 
particles in the nodes of the cube lattice of dimension a, which must be 
large enough to provide the validity of linear approximation (4.1). If  now 
we introduce the vector 

d = (na, ma, la); n, m, l = 0, 1, 2 . . . .  (4.4) 

we can calculate the resulting U-field as the following sum: 

Us(x) - ~ u,(t, r + d) 
d 

= f d 4 k exp(ikx) ~ exp [i(k.d)]g~(k)k2 ~ m s  2 

-~ f d 4 k exp (ikx) Gs(k) k2 ~ (4.5) -- ms 2 

where 

Gs(k) - ~ exp [i(k. d)] gs(k) = ~(k) g~(k) (4.6) 

By using (4.6) one can find the resulting V-field as follows: 

Vs(x) - -irr f d 4 k exp (ikx) G,(k) E(k ~ 3(k 2 ms 2) 

= b sin (ms t) (4.7) 

where 

b rn s \ a ] gs(m~) 

Thus, in the rest frame of the flux the resulting V-field is described by 
harmonic vibration of frequency 

k ~ = ms = E (4.8) 

The desired relation (4.3) can be obtained from (4.8) by Lorentz trans- 
formation. 

However, it should be remarked that our proof  of the Planck-de Broglie 
relation is not complete, since from the very beginning we have chosen 
the regular solution of mass m~. It is not clear why these mass values are 
preferable, since there are many other solutions of (2.4) with arbitrary 
masses. This is one of  the questions to be solved in a complete statistical 
theory, permitting one to calculate the transition probability W[~1150z]. 

From this point of view, the proposed scalar model is very approximate 
and cannot be used practically. In future it is proposed to treat the more 
realistic spinor model. 
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